Scenario generation with distribution functions and correlations
نویسندگان
چکیده
منابع مشابه
Scenario generation with distribution functions and correlations
In this paper, we present a method for generating scenarios for two-stage stochastic programs, using multivariate distributions specified by their marginal distributions and the correlation matrix. The margins are described by their cumulative distribution functions and we allow each margin to be of different type. We demonstrate the method on a model from stochastic service network design and ...
متن کاملScenario Generation with Differential Scenario
A generation method of scenarios using differential information between normal scenarios is presented. Behaviours of normal scenarios belonging to the same problem domain are quite similar. We derive the differential information between them and apply the information to generate new alternative/exceptional scenarios. Our method will be illustrated with examples. This paper describes (1) a langu...
متن کاملcoordination of protective schemes in distribution and subtransmission systems including distributed generation
نصب منابع پراکنده در سیستم های توزیع و فوق توزیع علاوه بر مزیت های فراوان، مشکلاتی را هم به همراه دارد. یکی از این مشکلات تأثیر این منابع روی اندازه جریان های اتصال کوتاه است. به طور معمول از حفاظت های مبتنی بر اصل جریان زیاد در سیستم های توزیع و فوق توزیع استفاده می شود. از مهمترین طرح های حفاظتی استفاده شده در فیدرهای توزیع، حفاظت فیوز- ریکلوزر است. همچنین از طرح های حفاظتی جریان زیاد جهتی در...
Scenario Generation
Stability-based methods for scenario generation in stochastic programming arereviewed. In particular, we briefly discuss Monte Carlo sampling, Quasi–Monte Carlo methods,quadrature rules based on sparse grids, and optimal quantization. In addition, we provide someconvergence results based on recent developments in multivariate integration. The method ofoptimal scenario reduction ...
متن کاملOptimal Multi-Objective Planning of Distribution System with Distributed Generation
This paper presents a multi-objective formulation for optimal siting and sizing of distributed generation (DG) resources in distribution systems in order to minimize the cost of power losses and energy not supplied. The implemented technique is based on a genetic algorithm (GA) and weight method that employed to obtain the best compromise between these costs. Simulation results on 33-bus distri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kybernetika
سال: 2015
ISSN: 0023-5954,1805-949X
DOI: 10.14736/kyb-2014-6-1049